

Cannon Design

Global Heart and Vascular Institute

Kaleida Health and the University at Buffalo

William McDevitt Structural Option AE 482 – Senior Thesis Dr. Richard Behr

Cannon Design

- Introduction
- Existing Structural System

- Construction Management Breadth
- Conclusion

Presentation Outline

- Thesis Proposal
- Structural Depth

•	Introduction
	Building Information
	Primary Project Team

- Existing Structural System
- Thesis Proposal
- Structural Depth
- Construction Management Breadth
- Conclusion

- Building Information • 10-story medical facility

 - \$291 million
 - Construction Dates: February 2008 April 2011

Introduction

- Located in Buffalo, NY
- 476,500 sf

Primary Project Team • Owner(s): Kaleida Health & Buffalo 2020 Development Corporation Architect and Engineers: Cannon Design Construction Manager/General Contractor: Turner Construction

•	Introduction	Foundatio
•	Existing Structural System	• Gra
	Foundation	-
	Gravity System	• Ste
	Lateral System	-
•	Thesis Proposal	-
•	Structural Depth	-
•	Construction Management Breadth	• 5" 5
•	Conclusion	

Existing Structural System

tion

- rade beams and pile caps
- 4000 psi concrete
- teel helical piles
- HP12x74 sections
- Allowable axial capacity of 342 kips
- Driven to refusal on limestone bedrock
- 'Slab on grade

|--|

- Existing Structural System
 - Foundation
 - Gravity System
- Lateral SystemThesis Proposal
- Structural Depth
- Construction Management Breadth
- Conclusion

Existing Structural System

- Gravity System
 - Floor System
 - 3" Composite Metal Deck
 - Total slab thickness ranging from 4" to 7 $\frac{1}{2}$ "
 - 18-gage galvanized steel sheets
 - Columns
 - W14 shapes, ranging from 68 to 370 lb/ft
 - Spliced every 36'
 - Provides 18' floor-to-floor height
 Universal Grid Layout
 - Bay size of 31'-6" by 31'-6"
 - Beams spaced at 10'-6"

- Introduction
- Existing Structural System Foundation Gravity System Lateral System
- Thesis Proposal
- Structural Depth
- Construction Management Breadth
- Conclusion

- Lateral System

Existing Structural System

• Concentrically braced frames around the perimeter

All HSS sections

• Low cost compared to moment frames

- Introduction
- Existing Structural System Foundation Gravity System Lateral System
- Thesis Proposal
- Structural Depth
- Construction Management Breadth
- Conclusion

- Lateral System

Existing Structural System

• Concentrically braced frames around the perimeter

All HSS sections

• Low cost compared to moment frames

 Introduction 	Structura
 Existing Structural System 	• Cc
Thesis Proposal	• Ex
Structural Depth	
Construction Management Breadth	
Mechanical Breadth	
MAE Requirements	• Re
Structural Depth	• Pe
Construction Management Breadth	• G(
Conclusion	

Thesis Proposal

- al Depth
- oncrete system could be less expensive
- xplore three alternatives discussed in Tech 2
- Flat slab with drop panels
- One-way joist and beam
- Pre-cast hollow core plank
- edesign gravity and lateral systems
- erform vibration analysis
- ioal is to design a more cost effective solution

 Introduction 	Construc
 Existing Structural System 	• De
Thesis Proposal	
Structural Depth	
Construction Management Breadth	• Sc
Mechanical Breadth	
MAE Requirements	
Structural Depth	• De
Construction Management Breadth	
Conclusion	

Thesis Proposal

- ction Management Breadth etailed Cost Analysis
- Current steel structure
- Redesigned concrete structure chedule Analysis
- Current steel structure
- Redesigned concrete structure
- etermine if redesign is more cost effective

- Introduction
- Existing Structural System
- Thesis Proposal
 - Structural Depth
 - Construction Management Breadth
 - Mechanical Breadth
 - MAE Requirements
- Structural Depth
- Construction Management Breadth
- Conclusion

Thesis Proposal

Mechanical Breadth

• Building envelope and façade study

- Obtain current curtain walls designs
- Research more efficient glazing system
- Perform thermal calculations using Trace 700
- Compare various alternatives

- Introduction
- Existing Structural System
- Thesis Proposal
 - Structural Depth
 - Construction Management Breadth
 - Mechanical Breadth
 - MAE Requirements
- Structural Depth
- Construction Management Breadth
- Conclusion

Thesis Proposal

Mechanical Breadth

Building envelope and façade study

- Obtain current curtain walls designs
- Research more efficient glazing system
- Perform thermal calculations using Trace 700
- Compare various alternatives

MAE Requirements

- RAM Structural System, ETABS, and SAP2000 models will utilize information learned in AE 597A, Computer Modeling of Building Structures
- 542, Building Enclosure Science and Design

• Mechanical Breadth will reference content from AE Vibration analysis will constitute MAE level work

- Introduction
- Existing Structural System
- Thesis Proposal
- Structural Depth
 - Gravity System Redesign Lateral System Redesign Vibration Analysis
- Construction Management Breadth
- Conclusion

Structural Depth

- Gravity System Redesign
 - Explored three alternative systems
 - Flat slab with drop panels
 - One-way joist and beam
 - Pre-cast hollow core plank
 - Flat slab with drop panel system chosen
 - Lowest cost
 - Utilize current bay size
 - Relatively flat ceiling
 - Designed gravity columns

Gravity Loads

- Floor System Dead Loads
 - Concrete self-weight
 - Superimposed Dead Load = 25 psf
- Floor System Live Loads
- Snow Load

- Conservatively assumed 125 psf for all floors

- Ground snow load determined from a case study to be 50 psf by Cannon Design - Calculated flat roof snow load of 42 psf

Introduction	Flat Slab D
Existing Structural System	• Perf
Thesis Proposal	-
Structural Depth	_ ·
Gravity System Redesign	- 3
Lateral System Redesign	• Mod
Vibration Analysis	- -
Construction Management Breadth	- (
Conclusion	• Det

Structural Depth

Design

formed hand calculations

- Minimum slab thickness of 11" per ACI 9.5.3.2
- 10 ¹/₂' by 10 ¹/₂' drop panels
- 3 ½"depth
- deled in spSlab
- Three alternatives for drop panel depth
- Chose 3 ¹/₂" depth with 6000 psi concrete termined column and middle strip reinforcement
- Used #7 bars for top and bottom reinforcement

 Introduction 	Column
Existing Structural System	• A
Thesis Proposal	
Structural Depth	
Gravity System Redesign	• SI
Lateral System Redesign	ir
Vibration Analysis	• D
Construction Management Breadth	• C
Conclusion	• D
	• C

Structural Depth

n Design

Approximated sizes using RAM Structural System

- Ranged from 20" by 20" to 36" by 36"
- Unbraced length controlled the column size Summed axial loads on a corner, exterior, and nterior column
- Determined column was part of a nonsway frame Checked slenderness
- Designed sub-basement, interior column by hand
- Checked hand design using spColumn
- Proceeded with design using spColumn

 Introduction 	Column
Existing Structural System	• A
Thesis Proposal	
Structural Depth	
Gravity System Redesign	• SI
Lateral System Redesign	ir
Vibration Analysis	• D
Construction Management Breadth	• C
Conclusion	• D
	• C

Structural Depth

n Design

Approximated sizes using RAM Structural System

- Ranged from 20" by 20" to 36" by 36"
- Unbraced length controlled the column size Summed axial loads on a corner, exterior, and nterior column
- Determined column was part of a nonsway frame Checked slenderness
- Designed sub-basement, interior column by hand
- Checked hand design using spColumn
- Proceeded with design using spColumn

Interior Column Design			
Level	Size (in x in)	A₅ (in²)	Long. Reinforcing
Roof	20 x 20	6.32	8 #8
9	24 x 24	6.32	8 #8
8	24 x 24	6.32	8 #8
7	24 x 24	6.32	8 #8
6	24 x 24	8.00	8 #9
5	28 x 28	8.00	8 #9
4	32 x 32	12.00	12 #9
3	32 x 32	12.00	12 #9
2	32 x 32	20.32	16 #10
1	32 x 32	20.32	16 #10
Mech	36 x 36	15.24	12 #10
Base	36 x 36	15.24	12 #10
SB	36 x 36	25.40	20 #10

Exterior Column Design			
Level	Size (in x in)	A₅ (in²)	Long. Reinforcing
Roof	20 x 20	6.32	8 #8
9	24 x 24	6.32	8 #8
8	24 x 24	6.32	8 #8
7	24 x 24	6.32	8 #8
6	24 x 24	6.32	8 #8
5	24 x 24	6.32	8 #8
4	24 x 24	6.32	8 #8
3	24 x 24	6.32	8 #8
2	28 x 28	8.00	8 #9
1	28 x 28	8.00	8 #9
Mech	28 x 28	8.00	8 #9
Base	28 x 28	8.00	8 #9
SB	28 x 28	8.00	8 #9

- Introduction
- Existing Structural System
- Thesis Proposal
- Structural Depth
 - Gravity System Redesign Lateral System Redesign
 - Vibration Analysis
- Construction Management Breadth
- Conclusion

- Found controlling load combination
- Designed shear walls Checked drift limitations
- Checked relative stiffness assumption
- Examined overturning and foundation impact

- Lateral System Redesign
 - Determined wind and seismic loads

 Introduction 	Wind Lo
Existing Structural System	• CI
Thesis Proposal	• ()
Structural Depth	
Gravity System Redesign	• E>
Lateral System Redesign	
Vibration Analysis	•
Construction Management Breadth	
Conclusion	

Structural Depth

ads

- hapters 26 and 27 of ASCE 7-10
- Occupancy category IV
- 120 mph basic wind speed
- xplored four wind cases
- Case 1 controls
- otal base shear
- East-West direction = 1581.7 kips
- North-South direction = 1535.5 kips

- Case 3. Wind loading as defined in Case 1, but considered to act simultaneously at 75% of the specified value
- Case 4. Wind loading as defined in Case 2, but considered to act simultaneously at 75% of the specified value.

Figure 27.4-8 from ASCE 7-10

 Introduction 	Wind Lo
 Existing Structural System 	• CI
Thesis Proposal	• ()
Structural Depth	
Gravity System Redesign	• E>
Lateral System Redesign	
Vibration Analysis	• To
Construction Management Breadth	
Conclusion	

Structural Depth

bads

- hapters 26 and 27 of ASCE 7-10
- Occupancy category IV
- 120 mph basic wind speed
- Explored four wind cases
- Case 1 controls
- otal base shear
- East-West direction = 1581.7 kips
- North-South direction = 1535.5 kips

Load Case	Direction	Shear in Wall (k)				
Loau Case		Α	Н	1	8	
1	W _x	730.0	784.4	11.0	4.0	
· ·	Wy	104.1	106.2	788.0	612.8	
2	W _x	541.1	606.7	13.2	7.8	
	Wy	84.4	86.3	597.3	464.3	
3	W _{xy}	475.2	668.0	593.9	668.0	
4	W _{xy}	342.9	511.3	434.5	354.2	

 Introduction 	Wind Lo
 Existing Structural System 	• CI
Thesis Proposal	• ()
Structural Depth	
Gravity System Redesign	• E>
Lateral System Redesign	
Vibration Analysis	• To
Construction Management Breadth	
Conclusion	

Structural Depth

bads

- Chapters 26 and 27 of ASCE 7-10 $^{\circ}$
-)ccupancy category IV
- 120 mph basic wind speed
- Explored four wind cases
- Case 1 controls
- otal base shear
- East-West direction = 1581.7 kips
- North-South direction = 1535.5 kips

Wind Story Forces							
		Load (kips)		Shear (kips)		Moment (ft-kips)	
Level	Height (ft)	N-S	E-W	N-S	E-W	N-S	E-W
Roof	185	57.3	80.4	0.0	0.0	10599.02	14872.28
9	169	146.3	169.4	57.3	80.4	24730.99	28634.67
8	151	176.4	176.4	203.6	249.8	26634.72	26634.72
7	133	172.8	172.8	380.0	426.2	22985.1	22985.1
6	115	168.8	168.8	552.8	599.0	19415.03	19415.03
5	97	164.5	164.5	721.7	767.9	15956.65	15956.65
4	79	159.7	159.7	886.2	932.4	12616.63	12616.63
3	61	153.7	153.7	1045.9	1092.1	9375.787	9375.787
2	43	126.2	126.2	1199.6	1245.8	5427.234	5427.234
1	30	85.0	85.0	1325.8	1372.0	2550.022	2550.022
Mechanical	21	51.9	51.9	1410.8	1457.0	1089.248	1089.248
Basement	16	72.8	72.8	1462.7	1508.9	1164.818	1164.818
	Total	1535.5	1581.7	1535.5	1581.7	152545.3	160722.2

- Introduction
- Existing Structural System
- Thesis Proposal
- Structural Depth Gravity System Redesign Lateral System Redesign Vibration Analysis
- Construction Management Breadth
- Conclusion

- Seismic Loads

- Chapters 11 and 12 of ASCE 7-10
- Assumed both directions would be the same
- Estimated total building weight of 86240 kips
- Equivalent Lateral Force Procedure
 - Seismic design category C
 - R = 5.0
 - Base shear of 1380 kips

Level	h _i (ft)	h (ft)	w (k)	w*h ^k	Cvx	f _i (k)	V _i (k)	M _i (ft-k)
Roof	16	185	4030	5038548	0.105	145	145	26907
9	18	169	7441	8220803	0.172	237	383	40104
8	18	151	8787	8323951	0.174	240	623	36282
7	18	133	8787	6998877	0.146	202	825	26870
6	18	115	8787	5737996	0.120	166	991	19048
5	18	97	9203	4762621	0.100	137	1128	13335
4	18	79	9630	3765258	0.079	109	1237	8586
3	18	61	9711	2667069	0.056	77	1314	4696
2	13	43	9303	1584711	0.033	46	1360	1967
1	9	30	2167	225691	0.005	7	1366	195
Mechanical	5	21	5617	359437	0.008	10	1376	218
Basement	16	16	2777	122592	0.003	4	1380	57
		Σ=	86240.43	47807553	1.000	1380		178264

Introduction	Load Co
Existing Structural System	1) 1 4
Thesis Proposal	2) 1 2
Structural Depth	3) 1 2
Gravity System Redesign	4) 1.2
Lateral System Redesign	5) 1.2
Vibration Analysis	6) 1.2
Construction Management Breadth	, 7) 1.2
Conclusion	8) 1.2
	9) 1.2
	10) 0
	11) ∩

```
ombinations
       2D + 1.6L + 0.5(Lr \text{ or } S \text{ or } R)
       2D + 1.6(Lr \text{ or } S \text{ or } R) + L
       2D + 1.6(Lr \text{ or } S \text{ or } R) + 0.5Wx
       2D + 1.6(Lr \text{ or } S \text{ or } R) + 0.5Wy
       2D + 1.0Wx + L + 0.5(Lr \text{ or } S \text{ or } R)
       2D + 1.0Wy + L + 0.5(Lr \text{ or } S \text{ or } R)
      2D + 1.0Ex + L + 0.2S
       2D + 1.0Ey + L + 0.2S
       0.9D + 1.0Wx
11) 0.9D + 1.0Wy
12) 0.9D + 1.0Ex
13) 0.9D + 1.0Ey
```


- Introduction
- Existing Structural System
- Thesis Proposal
- Structural Depth
 - Gravity System Redesign Lateral System Redesign Vibration Analysis
- Construction Management Breadth
- Conclusion

- - 1) 1.4D

Structural Depth

Load Combinations 2) 1.2D + 1.6L + 0.5(Lr or S or R) 3) 1.2D + 1.6(Lr or S or R) + L 4) 1.2D + 1.6(Lr or S or R) + 0.5Wx 5) 1.2D + 1.6(Lr or S or R) + 0.5Wy 6) 1.2D + 1.0Wx + L + 0.5(Lr or S or R)8) 1.2D + 1.0Ex + L + 0.2S 9) 1.2D + 1.0Ey + L + 0.2S 10) 0.9D + 1.0Wx 11) 0.9D + 1.0Wy 12) 0.9D + 1.0Ex 13) 0.9D + 1.0Ey

Load Combo	Shear in Wall (k)					
Load Combo	Α	Н	1	8		
1	3.3	4.3	1.5	0.9		
2	2.9	2.7	5.0	3.8		
3	2.1	1.7	3.7	2.6		
4	371.7	399.5	7.8	1.3		
5	52.8	56.8	395.4	305.6		
6	727.9	786.1	7.5	1.6		
7	106.1	107.8	804.9	623.8		
8	647.7	675.6	7.6	0.1		
9	93.2	94.4	711.4	575.6		
10	739.9	784.2	10.1	0.5		
11	104.5	108.8	799.1	622.6		
12	647.1	673.7	2.2	1.8		
13	92.2	92.5	708.8	583.3		
QUAKE	628.5	718.6	206.6	182.2		

 Introduction 	Shear W
 Existing Structural System 	• P
Thesis Proposal	• [
Structural Depth	• A
Gravity System Redesign	ir
Lateral System Redesign	• [
Vibration Analysis	b
Construction Management Breadth	• [
Conclusion	S

- Wall Design
- Placed two 16" thick shear walls in each direction
- _ocated on the perimeter
- Assumed each would take 50% of the load applied in that direction
- Jsed ETABS to determine the wall with the largest base shear
- Designed all four walls , by hand, for this controlling shear value
- 16" thick wall
- #4 bars at 10" for horizontal reinforcement
- #4 bars at 10" for vertical reinforcement
- (10) #9 bars at 2" for flexural reinforcement

 Introduction 	Drift An
Existing Structural System	• C
Thesis Proposal	S
Structural Depth	
Gravity System Redesign	• C
Lateral System Redesign	b
Vibration Analysis	
Construction Management Breadth	• A
Conclusion	

- nalysis
- Checked controlling seismic load combination for story drift - 0.010h_{sx} (Table 12.12-1 in ASCE 7-10)
- Checked controlling wind load combination for total building drift
- H/400
- All drift values were acceptable

Controlling Seismic Drift: East-West						
Level	Height (ft)	Story Drift (in)	Allowable	e Story Drift (in)		
Roof	185	0.467310	1.92	Acceptable		
9	169	0.429936	2.16	Acceptable		
8	151	0.396828	2.16	Acceptable		
7	133	0.352317	2.16	Acceptable		
6	115	0.301185	2.16	Acceptable		
5	97	0.238329	2.16	Acceptable		
4	79	0.174195	2.16	Acceptable		
3	61	0.114924	2.16	Acceptable		
2	43	0.062178	1.56	Acceptable		
1	30	0.036000	1.08	Acceptable		
Mechanical	21	0.021861	0.60	Acceptable		
Basement	16	0.010368	1.92	Acceptable		
SB	3	0.001791	0.36	Acceptable		

Controlling Seismic Drift: North-South					
Level	Height (ft)	Story Drift (in)	Allowable Story Drift (in		
Roof	185	0.478410	1.92	Acceptable	
9	169	0.438555	2.16	Acceptable	
8	151	0.404982	2.16	Acceptable	
7	133	0.359499	2.16	Acceptable	
6	115	0.307395	2.16	Acceptable	
5	97	0.243276	2.16	Acceptable	
4	79	0.178224	2.16	Acceptable	
3	61	0.116937	2.16	Acceptable	
2	43	0.055857	1.56	Acceptable	
1	30	0.032490	1.08	Acceptable	
Mechanical	21	0.017829	0.6	Acceptable	
Basement	16	0.015552	1.92	Acceptable	
SB	3	0.003078	0.36	Acceptable	

Wind Deflection: East-West					
Level	Height (ft)	Total Deflection(in)	Allowable	e Total Deflection (in)	
Roof	185	1.280716	5.55	Acceptable	
9	169	1.157314	5.07	Acceptable	
8	151	1.015849	4.53	Acceptable	
7	133	0.868758	3.99	Acceptable	
6	115	0.718702	3.45	Acceptable	
5	97	0.567508	2.91	Acceptable	
4	79	0.422255	2.37	Acceptable	
3	61	0.288135	1.83	Acceptable	
2	43	0.169761	1.29	Acceptable	
1	30	0.101421	0.90	Acceptable	
Mechanical	21	0.061281	0.63	Acceptable	
Basement	16	0.041924	0.48	Acceptable	
SB	3	0.007381	0.09	Acceptable	

Wind Deflection: North-South						
Level	Height (ft)	Total Deflection (in)	Allowable	e Total Deflection (in)		
Roof	185	1.215410	5.55	Acceptable		
9	169	1.099820	5.07	Acceptable		
8	151	0.968110	4.53	Acceptable		
7	133	0.830436	3.99	Acceptable		
6	115	0.689243	3.45	Acceptable		
5	97	0.546207	2.91	Acceptable		
4	79	0.408127	2.37	Acceptable		
3	61	0.279683	1.83	Acceptable		
2	43	0.166710	1.29	Acceptable		
1	30	0.114844	0.90	Acceptable		
Mechanical	21	0.083211	0.63	Acceptable		
Basement	16	0.067298	0.48	Acceptable		
SB	3	0.013594	0.09	Acceptable		

 Introduction 	Relative
Existing Structural System	• R
Thesis Proposal	d
Structural Depth	• P
Gravity System Redesign	• [\/
Lateral System Redesign	• C
Vibration Analysis	е
Construction Management Breadth	

Conclusion

- e Stiffness Check
- Reasonable method for checking the assumed
- distribution of lateral load
- Placed 100 kip load at the top of each wall
- Measured lateral displacement in inches
- Calculated relative stiffness of both shear walls in
- either direction

East-West Direction Relative Stiffness					
Frame	Relative Stiffness				
Α	169	100	0.6659	150.1695	0.5666
Н	185	100	0.8707	114.8510	0.4334
			Σ =	265.0206	1.0000

	North-South Direction Relative Stiffness				
Frame Height (ft) Load (k) Displacement (in) Stiffness (k/in) Relative					Relative Stiffness
1	169	100	0.6659	150.1695	0.5666
8	185	100	0.8707	114.8510	0.4334
			Σ =	265.0206	1.0000

- Introduction
- Existing Structural System
- Thesis Proposal
- Structural Depth Gravity System Redesign Lateral System Redesign Vibration Analysis
- Construction Management Breadth
- Conclusion

- Vibration Analysis
 - Current Design
 - Moderate walking pace of 75 steps/minute
 - Velocities ranging from $4000 500 \mu$ in/sec • Checked redesign to determine if criteria was met • Built 3-bay by 3-bay SAP2000 model
 - Slab modeled as 11" shell element
 - Drop panels modeled as 14 ¹/₂" shell elements
 - Discretized each into 9" by 9" squares
 - Columns modeled halfway above and below
 - Assumptions: $E = 1.2E_c$
 - $I = 0.7 I_{\alpha}$ for columns $I = 0.25I_{\alpha}$ for slab and drops

- Introduction Existing Structural System Thesis Proposal Structural Depth Gravity System Redesign Lateral System Redesign Vibration Analysis Construction Management Breadth
- Conclusion

Structural Depth

- Vibration Analysis
 - Separately placed 1 kip load at the center of interior and exterior bay
 - Measures deflection in inches
 - Determined fundamental period and natural frequency

Bay	Mode	Δ _p (in)	T (s)	f _n (Hz)
Exterior	7	0.00472	0.15133	6.60793
Interior	11	0.00420	0.12631	7.91720

Mode 7 Shape for Exterior Bay

- Introduction Existing Structural System Thesis Proposal Structural Depth Gravity System Redesign Lateral System Redesign Vibration Analysis Construction Management Breadth
- Conclusion

Structural Depth

- Vibration Analysis
 - Separately placed 1 kip load at the center of interior and exterior bay
 - Measures deflection in inches
 - Determined fundamental period and natural frequency

Bay	Mode	Δ _p (in)	T (s)	f _n (Hz)
Exterior	7	0.00472	0.15133	6.60793
Interior	11	0.00420	0.12631	7.91720

Mode 11 Shape for Interior Bay

- Introduction
- Existing Structural System
- Thesis Proposal
- Structural Depth Gravity System Redesign
 - Lateral System Redesign
 - Vibration Analysis
- Construction Management Breadth
- Conclusion

Structural Depth

Vibration Analysis • Calculated the vibrational velocity for each bay

 $U_v \Delta_p$ Z = l_n

- $U_v = 5500 \text{ lb } \text{Hz}^2 \text{ (moderate walking)}$
- Interior Bay = 2918μ in/sec
- Exterior Bay = 3929μ in/sec
- Potential Improvements
 - Increase concrete strength
 - Increase slab thickness
 - Decrease span length

Required Vibrational Velocities

- 4000 µ in/sec
 - Typical lab and surgery areas
- 2000 µ in/sec
 - Laboratory areas near corridors
- 1000 µ in/sec
 - Central lab areas with sensitive photography equipment
- <u>500 µ in/sec</u> - Extremely sensitive areas

 Introduction 	Detailed
 Existing Structural System 	• Es
 Thesis Proposal 	re
 Structural Depth 	
 Construction Management Breadth 	
Detailed Cost Analysis	• Es
Schedule Analysis	
Conclusion	
	• ^

Construction Management Breadth

- d Cost Analysis
- stimated the current steel building cost to create a elevant baseline
- Used RSMeans Building Construction Cost Data
- About \$11.9 million
- stimated concrete structure
- Used RSMeans Building Construction Cost Data
- About \$11.6 million
- About \$300,000 savings, or 2.9% cost reduction

Category	Description	Cost (\$)
Gravity Beam	Grade: 50	5771092.02
	Grade: Other	29273.21
	Fireproofing	499254.65
Gravity Column	I Section	1313676.83
	Fireproofing	69863.42
Structure Frame	Columns	823162.57
	Beams	349404.53
	Braces	129188.26
	Fireproofing	84842.30
Composite Deck	Metal Decking	1231183.80
	Shear Studs	89844.99
	Concrete Fill	993242.25
	Placing Concrete	197149.05
	Finishing Concrete	318710.70
	Total Cost (\$)	11899888.58

Steel Construction Cost

 Introduction 	Detailed
 Existing Structural System 	• Es
 Thesis Proposal 	re
 Structural Depth 	
 Construction Management Breadth 	
Detailed Cost Analysis	• Es
Schedule Analysis	
Conclusion	
	• ^

Construction Management Breadth

- d Cost Analysis
- stimated the current steel building cost to create a elevant baseline
- Used RSMeans Building Construction Cost Data
- About \$11.9 million
- stimated concrete structure
- Used RSMeans Building Construction Cost Data
- About \$11.6 million
- About \$300,000 savings, or 2.9% cost reduction

Category	Description	Cost (\$)
Columns	6000 psi Concrete	292821.23
	Reinforcing Steel	736412.60
	Formwork	1133271.98
	Placing Concrete	60460.03
Slabs and Drops	6000 psi Concrete	1994706.97
	Reinforcing Steel	1816459.43
	Formwork	4076464.63
	Placing Concrete	261323.82
	Finishing Concrete	319072.69
Shear Walls	6000 psi Concrete	146862.80
	Reinforcing Steel	115049.84
	Formwork	575849.91
	Placing Concrete	26266.80
	Total Cost (\$)	11555022.74

Concrete Construction Cost

•	Introduction	Schedule A
•	Existing Structural System	• Dete
•	Thesis Proposal	CONS
•	Structural Depth	• Exar
•	Construction Management Breadth	build
	Detailed Cost Analysis	- 1
	Schedule Analysis	• Asse
•	Conclusion	- F

Construction Management Breadth

- e Analysis
- etermine which system results in a longer onstruction time
- xamined schematic design schedule for steel uilding that was obtained from Cannon Design
- 192 days, or about 9 months
- ssembled concrete structure schedule
- RSMeans daily output values
- Projects of comparable size
- 242 days, or about 11 months

ID	Task Name	Duration	Start
1	Steel Superstructure	192 days	Mo
2	Mobilize Crane for Steel Erection	2 days	Mo
3	Structural Steel start	105 days	We
4	Steel Decking Basement/Trim out-tack & studs	20 days	We
5	Steel Decking	110 days	We
6	Layout/MEP sleeves, Pour stops Basement	12 days	We
7	Layout/Set MEP sleeves, Pour stops	108 days	We
8	Steel Decking 1 Level/Trim out-tack & stud	20 days	We
9	Layout/MEP sleeves, Pour stops, 1st Levi	12 days	Mo
10	Steel Decking 2nd Level/Trim out-tack & studs	20 days	We
11	Layout/MEP sleeves, Pour stops 2nd Level	12 days	ा
12	Steel Decking 3rd Level/Trim out-tack & studs	20 days	We
13	Layout/MEP sleeves, Pour stops 3rd Level	12 days	Tu
14	Steel Decking 4th Level/Trim out-tack & studs	20 days	We
15	Layout/MEP sleeves, Pour stops 4th Level	12 days	F
16	Steel Decking 5th Level/Trim out-tack & studs	20 days	We
17	Layout/MEP sleeves, Pour stops 5th Level	12 days	W
18	Steel Decking 6th Level/Trim out-tack & studs	20 days	W
19	Layout/MEP sleeves, Pour stops 6th Level	12 days	Mo
20	Steel Decking 7th Level/Trim out-tack & studs	20 days	We
21	Layout/MEP sleeves, Pour stops 7th Level	12 days	W
22	Steel Decking 8th Level/Trim out-tack & studs	20 days	W
23	Layout/MEP sleeves, Pour stops 8th Level	12 days	F
24	Steel Decking 9th Level/Trim out-tack & studs	20 days	We
25	Layout/MEP sleeves, Pour stops 9th Level	12 days	Т
26	Steel Decking Roof	10 days	W
27	Roof Deck	10 days	We
28	Roofing - Main	30 days	We
29	Layout/MEP sleeves, Pour stops Roof	12 days	Th
30	Screenwall	15 days	We
31	Skylights	30 days	We

Steel Construction Schedule

•	Introduction	Schedule A
•	Existing Structural System	• Dete
•	Thesis Proposal	CONS
•	Structural Depth	• Exar
•	Construction Management Breadth	build
	Detailed Cost Analysis	- 1
	Schedule Analysis	• Asse
•	Conclusion	- F

Construction Management Breadth

- e Analysis
- etermine which system results in a longer onstruction time
- xamined schematic design schedule for steel uilding that was obtained from Cannon Design
- 192 days, or about 9 months
- ssembled concrete structure schedule
- RSMeans daily output values
- Projects of comparable size
- 242 days, or about 11 months

ID	Task Name	Duration	Start	Finish	v 15, Dec 27, Feb 7, '1 Mar 21, May 2, 'Jun 13, Jul 25, 'Sep 5, '2 Oct 17, Nov 28,
1	Concrete Superstructure	242 days	Mon 1/11/10	Tue 12/14/10	
2	Frame Columns and Walls - Basement	8 days	Mon 1/11/10	Wed 1/20/10	
3	Set Rebar Columns and Walls - Basement	5 days	Mon 1/18/10	Fri 1/22/10	0
4	Pour Columns and Walls - Basement	6 days	Sat 1/23/10	Fri 1/29/10	
5	Frame Slab and Drops - Basement	8 days	Thu 1/14/10	Mon 1/25/10	
6	Set Rebar Slabs and Drops - Basement	5 days	Thu 1/21/10	Wed 1/27/10	
7	Pour Slabs and Drops - Basement	6 days	Thu 1/28/10	Thu 2/4/10	
8	Frame Columns and Walls - Mechanical	8 days	Fri 2/12/10	Tue 2/23/10	
9	Set Rebar Columns and Walls - Mechanical	5 days	Fri 2/19/10	Thu 2/25/10	
10	Pour Columns and Walls - Mechanical	6 days	Fri 2/26/10	Fri 3/5/10	
11	Frame Slab and Drops - Mechancial	8 days	Mon 2/15/10	Wed 2/24/10	
12	Set Rebar Slabs and Drops - Mechanical	5 days	Mon 2/22/10	Fri 2/26/10	
13	Pour Slabs and Drops - Mechanical	6 days	Sat 2/27/10	Fri 3/5/10	0
14	Frame Columns and Walls - Level 1	8 days	Sat 3/13/10	Tue 3/23/10	
15	Set Rebar Columns and Walls - Level 1	5 days	Sat 3/20/10	Thu 3/25/10	
16	Pour Columns and Walls - Level 1	6 days	Fri 3/26/10	Fri 4/2/10	
17	Frame Slab and Drops - Level 1	8 days	Tue 3/16/10	Thu 3/25/10	
18	Set Rebar Slabs and Drops - Level 1	5 days	Tue 3/23/10	Mon 3/29/10	
19	Pour Slabs and Drops - Level 1	6 days	Tue 3/30/10	Tue 4/6/10	
20	Frame Columns and Walls - Level 2	8 days	Wed 4/14/10	Fri 4/23/10	
21	Set Rebar Columns and Walls - Level 2	5 days	Wed 4/21/10	Tue 4/27/10	
22	Pour Columns and Walls - Level 2	6 days	Wed 4/28/10	Wed 5/5/10	0
23	Frame Slab and Drops - Level 2	8 days	Sat 4/17/10	Tue 4/27/10	
24	Set Rebar Slabs and Drops - Level 2	5 days	Sat 4/24/10	Thu 4/29/10	0
25	Pour Slabs and Drops - Level 2	6 days	Fri 4/30/10	Fri 5/7/10	
26	Frame Columns and Walls - Level 3	8 days	Sat 5/15/10	Tue 5/25/10	
27	Set Rebar Columns and Walls - Level 3	5 days	Sat 5/22/10	Thu 5/27/10	0
28	Pour Columns and Walls - Level 3	6 days	Fri 5/28/10	Fri 6/4/10	
29	Frame Slab and Drops - Level 3	8 days	Tue 5/18/10	Thu 5/27/10	
30	Set Rebar Slabs and Drops - Level 3	5 days	Tue 5/25/10	Mon 5/31/10	
31	Pour Slabs and Drops - Level 3	6 days	Tue 6/1/10	Tue 6/8/10	
32	Frame Columns and Walls - Level 4	8 days	Wed 6/16/10	Fri 6/25/10	
33	Set Rebar Columns and Walls - Level 4	5 days	Wed 6/23/10	Tue 6/29/10	
34	Pour Columns and Walls - Level 4	6 days	Wed 6/30/10	Wed 7/7/10	

Concrete Construction Schedule

- Introduction
- Existing Structural System
- Thesis Proposal
- Structural Depth
- Construction Management Breadth
- Conclusion

- While the concrete building is currently about \$300,000 less expensive, several factors should be considered

 - Elongated schedule
- In the end, the current steel building is probably the more efficient and economical design

Conclusion

• The main goal of this thesis was to design a concrete building in the hope that it would be less expensive than its steel counterpart

- Inadequate vibration design
- Foundation strengthening
- Cold weather concreting in Buffalo, NY

 Introduction Existing Structural System Thesis Proposal Structural Dopth 	Cannon I • Ra • Ch
 Structural Depth Construction Management Breadth Conclusion 	Kaleida F • Mi
	Penn Sta

- enn State AE Faculty and Staff
 Dr. Richard Behr Faulty Advisor • Dr. Linda Hanagan Professor Kevin Parfitt Professor Robert Holland

Acknowledgements

- Design achel Chicchi hip Barry
- Health lickey Mariacher

My family and friends!

Cannon Design

Questions and Comments?

